The Interrelationships among Trace Element Cycling, Nutrient Loading, and System Complexity in Estuaries: A Mesocosm Study
نویسندگان
چکیده
Biogeochemical interactions between a suite of trace elements and nutrients were examined in a series of experimental mesocosm experiments to understand how multiple stressors affect estuarine environments and how these effects are modified by the complexity of the system used to examine them. Experimental treatment included additions of nutrients and trace elements separately and combined, along with a gradient in experimental system complexity. Eight mesocosm experiments were carried out from 1996 through 1998. Increased nutrients generally decreased dissolved trace element concentrations, in large part through an increase in phytoplankton biomass, but also by increasing the concentration of metals in the particles. Trace element additions increased dissolved nutrients by decreasing phytoplankton biomass. The presence of sediments reduced both dissolved trace element and nutrient concentrations. Other complexity treatments had weaker effects on both dissolved nutrients and trace elements. Many of the observed effects appeared to be seasonal, occurring only in spring, or their magnitude was greater in spring. This may be linked to a change from phosphorus to nitrogen limitation that often occurs in the Patuxent River estuary in the late spring or early
منابع مشابه
Seasonal Variability in Response of Estuarine Phytoplankton Communities to Stress: Linkages between Toxic Trace Elements and Nutrient Enrichment
We examined individual and interactive effects of two stressors—nutrients (nitrogen [N] and phosphorus [P]) and trace elements (a mix of arsenic [As], copper [Cu], and cadmium [Cd], and in a second experiment also zinc [Zn] and nickel [Ni])—on phytoplankton of the mesohaline Patuxent River, a tributary of Chesapeake Bay. Experiments were conducted in twenty 1-m3 mesocosms. Four mesocosm runs us...
متن کاملUV effects on marine planktonic food webs: A synthesis of results from mesocosm studies.
UV irradiance has a broad range of effects on marine planktonic organisms. Direct and indirect effects on individual organisms have complex impacts on food-web structure and dynamics, with implications for carbon and nutrient cycling. Mesocosm experiments are well suited for the study of such complex interrelationships. Mesocosms offer the possibility to conduct well-controlled experiments with...
متن کاملEcological constraints on planktonic nitrogen fixation in saline estuaries. I. Nutrient and trophic controls
Heterocystous, planktonic cyanobacteria capable of fixing atmospheric N2 into available nitrogen (N) are common and critically important to nutrient cycling in many lakes, yet they are rarely observed in estuaries at salinities >10 ppt, even when strongly N limited. In a series of mesocosm experiments using water from Narragansett Bay (Rhode Island), we manipulated top-down (grazing) and bottom...
متن کاملWeak and Habitat-Dependent Effects of Nutrient Pollution on Macrofaunal Communities of Southeast Australian Estuaries
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than est...
متن کاملAre large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries.
Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvo...
متن کامل